Author/s:

Hatsuzuka, D.
Fujinami, H.

Publisher:

American Meteorological Society

Year of Publication:

2017

The quasi-biweekly oscillation (QBW) is a dominant intraseasonal mode in summer rainfall over Bangladesh. Active phases of the QBW are often accompanied by low pressure systems (LPSs) such as vortex-type lows. This study investigated the effects of two intraseasonal modes: the QBW and the boreal summer intraseasonal oscillation (BSISO), on the genesis of LPSs over Bangladesh during 29 summer monsoon seasons. Daily-lag composites of convection and low-level atmospheric circulation were constructed for active-phase cases with LPSs (LPS case) and without LPSs (non-LPS case) based on rainfall in the QBW over Bangladesh. In the QBW mode, a westward propagation of an anticyclonic anomaly from the western Pacific to the Bay of Bengal (BoB) is common in both cases. However, the anticyclonic center in the LPS case is located slightly to the east of that in the non-LPS case, which results in stronger cyclonic vorticity over and around Bangladesh. In contrast, the BSISO mode shows an opposite phase between the two cases: a cyclonic (anticyclonic) anomaly propagating northward from the equator to the BoB in the LPS (non-LPS) case. In the LPS case, the cyclonic anomaly in the BSISO mode enhances the westerly (easterly) flow over the BoB (Bangladesh) in the active phase, resulting in the enhancement of cyclonic vorticity over the northern BoB and Bangladesh, in cooperation with the QBW mode. These results suggest that both the QBW and BSISO modes have significant influence on the environmental conditions for LPS genesis over Bangladesh.

comments powered by Disqus